

Level-1 Python with Virtual Robotics

CodeSpace Mission Pack

Teacher's Manual

Table of Contents

Table of Contents	1
Introduction	3
Our Approach	4
How is this different?	5
CodeSpace Overview	6
Troubleshooting	7
Helpful Hints	7
Classroom Preparation	8
Assessing Student Created Project Remixes	9
Testing Services	10
Certiport IT Specialist - Python	10
Background	10
Test Format and Administration	10
Practice Materials	10
Content Overview	10
OpenEDG PCEP	10
Background	10
Test Format and Administration	10
Practice Materials	10
Content Overview	10
Firia Labs Python Level-1 Learning Objectives	11
** Any mission referred to in the above table that you do not currently see on sim.fi	-
soon. **	14
Level 1 Python with Virtual Robots Unit Overview	15
MISSION 1 & 2: Welcome & Introducing CodeBot	17
MISSION 3: Light the Way	18
MISSION 4: Get Moving	20
MISSION 5: Dance Bot	23
MISSION 6: Robot Metronome	25
MISSION 7: Line Sensors	26
MISSION 8: Boundary Patrol	27
MISSION 9: Line Following	29

MISSION 10: Fido Fetch	31
MISSION 11: Airfield Ops	32
MISSION 12: King of the Hill	33
MISSION 13: Going the Distance	34
MISSION 14: Music Box	35
MISSION 15: Cyber Storm	37

Introduction

Welcome!

This guide book will give you everything you need to make the most of the Firia Labs Python with Robots Coding Kits.

For many students and teachers, this is their very first exposure to text-based coding. If that's your situation, don't worry! We've designed the kits and this manual to gently guide you from "absolute beginner" to a very comfortable level of proficiency.

Don't Panic :-)

We understand that tackling a subject like Computer Coding can be pretty intimidating. Fear not, we've built some amazing tools to help you!

As you begin this journey, know that the team at Firia Labs is here to help too! If you run into any problems, just let us know and we'll get you back on track.

Email us at: support@firialabs.com

If there's a problem that needs our attention, you can create a support ticket and we'll get back to you directly! You'll also find a community forum on our "On Fire With Firia" <u>Facebook page</u>, where you can ask questions and post ideas, or share your latest projects with other CodeSpace users!

Our Approach

Project Based Motivation

Student: "Why are we even learning this?"

Sound familiar? We all find that knowledge tastes <u>so</u> much better when you're *hungry* for it! Our goal is to <u>motivate</u> students with tangible, challenging, and practical **projects** ...that just happen to require coding to build. We want students to think about how they might code a given project using what they already know. Only then do we teach *just enough* coding concepts to help them get the job done. This approach gives reason and meaning to each concept, as well as relevant problem context which helps them retain it!

We have also thrown a few "gamification" elements, such as Experience Points (XP), into our approach to provide additional motivators. But we like to remind students: it's not about "points" - it's about "projects"!

Type it In

Student: "Hey, I can't copy and paste the code from the lesson examples!"

Prior to our extensive testing of this program on groups of 4th—12th graders, we were concerned that the "typing burden" might be a problem. But we were willing to risk it, because:

- > Typing in the code forces focus, dramatically improving retention.
- > Keyboarding proficiency is "key" to expressiveness in programming language.
- > *Mistakes* in structure, grammar, punctuation, capitalization, etc. are priceless learning opportunities.

The last point above is crucial. Students learn an incredible amount from their mistakes! Our goal is to provide awesome safety-nets for them, guiding them to iterate quickly through successive failed attempts to arrive at a working solution.

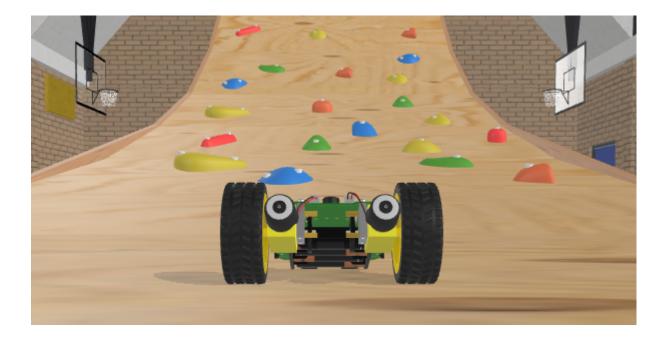
Extensive classroom observation has convinced us that the "typing burden" is not a problem. Students dive right in, and they don't have to be speed typists to make great progress in coding.

Exploration and Creativity

One of the great things about coding is the expressiveness it affords. Coding is a *craft* that takes time to master, but with only a few basic tools you can start crafting some pretty amazing things!

Before they even complete the first project, some of your students will probably be experimenting "off-script" with some ideas of their own. That's a good thing! We list some ideas for re-mixing each project's concepts later in this guide.

Remember that students are learning programming skills they could use to build *any* application—from controlling a rocket-ship to choreographing dance moves. Nurture the creativity, explore, and instill the Joy of Coding!



How is this different?

There are so many approaches to teaching coding. How is this different?

While there are some great online coding education programs, we think our approach helps reach a broader range of students:

- Teaches a real, professional programming language. Even younger students appreciate that you can make real money with these exact skills.
- Gives students the tools to create *anything* they can imagine. Beyond the projects and curriculum, we give students a full-fledged software development environment. These are professional-strength tools for writing code. (Contrast that with other approaches that only provide a game-playing environment. Once you "win", then what?)

CodeSpace Overview

The CodeSpace Web Application

Ready to Code? We've made it really easy to get started!

Here are the basic steps:

- 1. Open your Chrome web browser
- 2. Go to https://sim.firialabs.com
- 3. Login to your account or create one (click in the bottom left corner)
- 4. Select Class (click the two people icon in the upper left corner)

8									632
	T				A Mission 1: Welcome				LEVEL-1
	Click "Fi or creat	Missio	n Pack Selection	C			IOIN CLASS	LABS	
	-	Active	Class Name	Mission Pa	ck	Seats Available /	Licensed		
		F	Free Trial: Python Level-1	Introduction	n to CodeSpace and Robotics Simulation	Ø			
		~	Grice CS class	Python Lev	el-1 with Virtual Robotics	N/A			
		LEVEL-1	Python Level-1 with Virt Learn Python with virtua		enges and a pathway to Certification	n.	CLOSE		
\$								NEXT	0
P									4
۲									
븆 Sim	ulated CodeBot CB2 Connecte			Col 18 RESET	🔺 Void Matrix 👻	🖿 Rotate 🔫	•		

Help! It's not working!?

What about problems with logging in, python coding, or other issues?

For coding problems, the first thing to try is to go back to the simplest example that *does* work for you. If there are error messages you don't understand, let us know about them. For that and any other issues, file a ticket at the support link above, go to our "On Fire With Firia" <u>Facebook page</u> and post the question, or email us at support@firialabs.com. We have real humans eager to help solve your problems!

Helpful Hints

Appendix A: Mission and Objective Contents, including all CodeTreks and Solutions

Appendix B: The Toolbox - all tools revealed!

Classroom Preparation

One to One

Writing code is similar in many ways to literary writing. There are grammar and syntax rules that must be followed, all while composing a meaningful narrative to satisfy the writer's objectives.

Just as developing writing skills requires individual practice, learning to code requires that students compose and test their work individually. They need to make their own mistakes, and struggle through correcting them.

Pacing and Remixing

We suggest that students be allowed a minimum of 30-minutes per session, at least until they get through the first two projects. In our experience, many students will stay engaged in excess of 90 minutes of one-on-one time working through projects. Of course, this depends on the students and the dynamics of the particular classroom. There's no substitute for a teacher's understanding of what works for a particular group of students. Experiment, and find what works for you! In the pacing guidelines below, the suggested days are based on a 90 minute block. Adjust accordingly to your school day. Because of the time it takes to set up and tear down, it may take *more than* twice as many days in a 45 minute period.

Naturally, students will progress at different speeds. Since the material is set up for independent study, you have the *option* of letting faster students move ahead to more advanced projects independently.

Remixing provides an alternative that can keep groups more synchronized in their progress through the projects. Each project can be modified, extended, and enhanced. Many students will want to experiment with what they've learned, and we offer suggestions along the way to spur this creative tinkering. If you want to keep a groups' progress in sync, instruct accelerated students to *remix* the current project upon completion, rather than moving to the next one.

We want the teachers to feel free to remix too! Create your own lesson plans using the same template as below. Then share your ideas with our online PLN at our facebook page <u>On Fire With Firia</u>!

Assessing Student Created Project Remixes

We recommend, in order to generate mastery, a student should practice what they are learning. One way to do this is to create a remix of each mission. A generic project rubric for these remixes can be found here as either a printable version or a Google form for paperless grading. The rubric is intended to be used for any Codespace project, but *not all standards are met with every project*. Make a copy and edit as needed. You may also want to add custom requirements or point values specific for your class. A project planning sheet is also available on the support page. Students should create a plan (and perhaps get it approved by the teacher) before they begin. Remind students that revising is just as important here as it is in English class. These revisions can lead to great conversations during the conferencing process. An example flowchart is available for your guidance when teaching students how to make a flowchart of their ideas before they begin coding. Technokids explains flowcharts with more examples and a video at the end.

Students should receive a copy of the rubric before beginning a project. You may want to make copies for all students at the beginning of the course to put in their class notebooks, and then post specific project rubrics electronically as you start a new unit. Discuss the criteria and what it means to earn mastery. It is beneficial to give students time to revise and improve upon their projects (as time permits). Students who simply achieve "Proficient" may be motivated to earn "Mastery," so decide what your classroom policy and expectations will be and explain it to students early on. You may need to revise policies as you get to know your students and observe how CodeSpace works for them, so flexibility is important!

Student-Teacher and peer conferencing are integral to the learning process. This takes more time in class, but this is not wasted time! Students will work harder and be more willing to do revisions, which is truly a workplace life skill we'd like to instill in our students! To manage the process, it helps to have a submission window, rather than one set due date. Before students submit, they should complete a peer review. This may take modeling a few times before students do it correctly. They should go through the rubric and test the program just as you would. This will give them the chance to find and correct mistakes before doing a student-teacher conference. Once they submit, call students up for a conference. Share the Google Forms version of the rubric (note-remember to edit as you did for the rubric you distributed at the beginning of the project) with your students. Begin with an open-ended question, such as, "Tell me about your project," before moving on to the rubric. This may give you insight into who did what (if working in pairs) and what challenges they encountered. As you conference about the rubric, ask them what level of mastery they think they achieved, and ask for evidence as to why. Students are often much more critical of their work than need be. It's a good time to emphasize challenges and mistakes as learning opportunities, rather than just being "wrong." If there is room for improvement and still time in the submission window, students should be allowed to debug and improve before submitting.

Students who are finished may enjoy having time to work on other unscripted projects while they wait for their classmates to finish conferencing. Again, this is not wasted time! Learning through trial and error is time well-spent.

A second way to assess students is to have them take practice certification tests. The students and teachers will see just how much the students are learning by charting their scores before starting the modules, after each module and after they have completed all of the modules. These modules are created to teach all concepts needed in order to pass either the Certiport IT Specialist-Python or OpenEDG - PCEP certifications.

The next few pages discuss these certification pathways for Python and how Level 1 Python with Virtual Robotics is aligned with these standards.

Testing Services

Certiport IT Specialist - Python

Background

According to the Certiport website, "The Information Technology Specialist program is a way for students to validate entry level IT skills sought after by employers. The IT Specialist program is aimed at candidates who are considering or just beginning a path to a career in information technology. Students can certify their knowledge in a broad range of IT topics, including software development, database administration, networking and security, mobility and device management, and coding." Python is one of the coding language pathways. "Candidates for this exam will demonstrate that they can recognize, write, and debug Python code that will logically solve a problem."

Test Format and Administration

This is a computer based, online, 50 minute exam with 33-43 questions.

Practice Materials Certiport offers CertPREP practice tests, powered by GMetrix, cost\$

Content Overview

Certiport IT Specialist Exam Objectives - Python

OpenEDG PCEP

Background

OpenEDG offers a sequence of Python certifications.

Test Format and Administration

- PCEP-30-02 Exam: 40 minutes, NDA/Tutorial: 5 minutes
- PCEP-30-01 Exam: 45 minutes, NDA/Tutorial: 5 minutes
- 30 Questions each
- Single- and multiple-select questions, drag & drop, gap fill, sort, code fill, code insertion | Python 3.x

Practice Materials

Python Essentials lessons through PCEP

Content Overview

PCEP Certified Entry Level Python Programmer Exam Syllabus EXAM PCEP-30-02 - Active

Firia Labs Python Level-1 Learning Objectives

This is a unified set of Learning Objectives covering the requirements of both Certiport and OpenEDG.

Ref	Category	Concept	Focus Mission	Other Missions
1.1	builtins	input()	Line Sensors	Scoreboard
1.2	builtins	len()	Robot Metronome	Scoreboard
1.3	builtins	built-in functions	Dance Bot	
1.4	builtins	print() with sep, end params	Dance Bot	
2.1	concepts	Interpreter vs Compiler	Teacher Manual	
2.2	concepts	Source code vs Object (machine) code	Teacher Manual	
2.3	concepts	coding style, PEP8 basics	Teacher Manual	
2.4	concepts	Errors: Syntax, Runtime, Logic	Teacher Manual	Scoreboard
3.1	core	None	(future)	
3.2	core	identity operator: 'is'	Eternal Flame	
3.3	core	using del to "undefined" variables	(future)	
3.4	core	type inspection using type() function	Eternal Flame	
3.5	core	pass	Cyber Storm	
3.6	core	Using help() on the REPL	(future)	
3.7	core	Backslash line continuation	(future)	
3.8	core	multiple assignment (unpacking)	Music Box	
3.9	core	conditional statements: elif, else	Fido Fetch	
3.10	core	augmented assignments	Go the Distance	
3.11	core	type conversion: int()	Music Box	Rock Climber and Combo Lock
3.12	core	global vs local scope, global keyword	Line Following	
3.13	core	bool	Robot Metronome	
3.14	core	conditional statements: if	Robot Metronome	
3.15	core	Keywords vs user-defined variable names	Dance Bot	
3.16	core	Indentation	Dance Bot	

3.17	core	comments	Light the Way	
4.1	exceptions	exception handling: try, except	Scoreboard	
4.2	exceptions	exception handling: else, finally	Scoreboard	
4.3	exceptions	raising exceptions: raise	Scoreboard	
5.1	files	File I/O: append, with	Cyber Storm	
5.2	files	File existence check, deletion	Cyber Storm	
5.3	files	File I/O: open, close, read, write	Music Box	
6.1	functions	recursion	(future)	
6.2	functions	parameters vs arguments	Boundary Patrol	
6.3	functions	positional vs keyword arguments	Boundary Patrol	
6.4	functions	function return values	Line Sensors	
6.5	functions	default function parameters	Dance Bot	Boundary Patrol
6.6	functions	defining functions	Dance Bot	
7.1	loops	continue	(future)	
7.2	loops	while-else, for-else	(future)	
7.3	loops	using for loop to iterate over string	(future)	
7.4	loops	multiple assignment in for loop	Music Box	
7.5	loops	using for loop to iterate over list	Music Box	
7.6	loops	break	Line Sensors	Cyber Storm
7.7	loops	while loop	Dance Bot	
7.8	loops	for loop, range()	Dance Bot	
8.1	math	float (type and coercion/ctor)	Eternal Flame	
8.2	math	Scientific notation	(future)	
8.3	math	bitwise operators: ~	(future)	
8.4	math	bitwise operators: &	Combination Lock	
8.5	math	bitwise operators:	Combination Lock	Scoreboard
8.6	math	bitwise operators: ^	Combination Lock	
8.7	math	int (type and coercion/ctor)	Music Box	
8.8	math	Modulo %	Runway Ops	

8.9	math	Numeric multiply * operator	Go the Distance	
8.10	math	Numeric divide / operator	Go the Distance	
8.11	math	Integer division //	Go the Distance	Runway Ops
8.12	math	hex and octal literals	Combination Lock	
8.13	math	Power ** operator	Combination Lock	Runway Ops
8.14	math	boolean 'and'	Line Following	
8.15	math	boolean 'or'	Line Following	
8.16	math	operator precedence	Robot Metronome	
8.17	math	bitwise shifts: << >>	Robot Metronome	Combination Lock & Scoreboard
8.18	math	boolean 'not'	Robot Metronome	Scoreboard
8.19	math	comparison operators	Robot Metronome	
8.20	math	binary literals	Light the Way	Combination Lock
9.1	modules	datetime module (strftime, strptime)	Time Machine	
9.2	modules	math module	Rock Climber	
9.3	modules	random module	Eternal Flame	
9.4	modules	import of modules	Light the Way	
9.5	modules	Using unittest	Teacher Manual	
9.6	modules	os, sys, os.path, io	Teacher Manual	Cyber Storm
10.1	sequences	using list() constructor	Traffic Light	
10.2	sequences	using tuple() constructor	Traffic Light	
10.3	sequences	containment tests: 'in' and 'not in'	Cyber Storm	
10.4	sequences	dictionary: copy() method	Traffic Light	
10.5	sequences	list: copy() method and [:] to copy	Traffic Light	
10.6	sequences	slicing lists	Traffic Light	
10.7	sequences	copying a list	Traffic Light	
10.8	sequences	negative indices	Eternal Flame	
10.9	sequences	list: extend()	Traffic Light	
10.10	sequences	list operator: +	Traffic Light	
10.11	sequences	list operator: *	Runway Ops	

10.12 sequences list: insert() Traffic Light 10.13 sequences list: remove() Traffic Light 10.14 sequences list: del (index or slice) Traffic Light 10.15 sequences list/tuple: index() Traffic Light 10.16 sequences list/tuple: sorted(), reversed() Eternal Flame 10.17 sequences dictionary: keys(), items(), values() (future) 10.18 sequences list: sort() Eternal Flame 10.19 sequences list: append() Music Box 10.20 sequences list: append() Music Box 10.21 sequences list: append() Music Box 10.22 sequences list: append() Music Box 10.23 sequences list: comprehensions Line Following 10.24 sequences list:/tuples: matrices Line Sensors 10.25 sequences list: literals and usage Robot Metronome 11.1 strings string (type and coercion/ctor) Cyber Storm 11.2 strings string sering secape sequences	r			•	
10.14 sequences list: del (index or slice) Traffic Light 10.15 sequences list/tuple: index() Traffic Light 10.16 sequences list/tuple: sorted(), reversed() Eternal Flame 10.17 sequences dist/tuple: sorted(), reversed() Eternal Flame 10.18 sequences list: sort() Eternal Flame 10.19 sequences list: append() Music Box 10.20 sequences tuple: literals and usage Line Following 10.21 sequences dictionary: literals and usage Line Following 10.22 sequences dictionary: literals and usage Line Following 10.22 sequences list comprehensions Line Following 10.23 sequences list: literals and usage Robot Metronome 11.2 strings string (type and coercion/ctor) Cyber Storm 11.1 strings string escape sequences Cyber Storm 11.2 strings string strings Music Box 11.4 strings string operator: + Scoreboard Cyber Storm 11.4	10.12	sequences	list: insert()	Traffic Light	
10.15 sequences list/tuple: index() Traffic Light 10.16 sequences list/tuple: sorted(), reversed() Eternal Flame 10.17 sequences dictionary: keys(), items(), values() (future) 10.18 sequences list: sort() Eternal Flame 10.19 sequences list: append() Music Box 10.20 sequences using dict() constructor (future) 10.21 sequences tuple: literals and usage Line Following 10.22 sequences dictonary: literals and usage Line Following 10.23 sequences list comprehensions Line Following 10.24 sequences Nested lists/tuples: matrices Line Sensors 10.25 sequences list: literals and usage Robot Metronome 11.1 strings string (type and coercion/ctor) Cyber Storm 11.2 strings string escape sequences Cyber Storm 11.3 strings string formatting with f-strings Go the Distance 11.4 strings string operator: + Scoreboard Cyber Storm <	10.13	sequences	list: remove()	Traffic Light	
10.16 sequences list/tuple: sorted(), reversed() Eternal Flame 10.17 sequences dictionary: keys(), items(), values() (future) 10.18 sequences list: sort() Eternal Flame 10.19 sequences list: append() Music Box 10.20 sequences list: append() Music Box 10.21 sequences ligt and usage Line Following 10.22 sequences dictionary: literals and usage Line Following 10.23 sequences list comprehensions Line Following 10.24 sequences Nested lists/tuples: matrices Line Sensors 10.25 sequences list: literals and usage Robot Metronome 11.1 strings string (type and coercion/ctor) Cyber Storm 11.2 strings slicing string secape sequences Cyber Storm 11.4 strings multiline strings Music Box 11.4 strings string formatting with f-strings Go the Distance 11.4 strings string operator: + Scoreboard Cyber Storm 11.6 <	10.14	sequences	list: del (index or slice)	Traffic Light	
10.17 sequences dictionary: keys(), items(), values() (future) 10.18 sequences list: sort() Eternal Flame 10.19 sequences list: append() Music Box 10.20 sequences using dict() constructor (future) 10.21 sequences tuple: literals and usage Line Following 10.22 sequences dictionary: literals and usage Line Following 10.23 sequences list: comprehensions Line Following 10.24 sequences Nested lists/tuples: matrices Line Sensors 10.25 sequences list: literals and usage Robot Metronome 11.1 strings string (type and coercion/ctor) Cyber Storm 11.2 strings slicing strings Cyber Storm 11.3 strings multiline strings Music Box 11.4 strings multiline strings Go the Distance 11.5 string operator: + Scoreboard Cyber Storm 11.5 strings string operator: + Rock Climber 11.7 strings string operator: *	10.15	sequences	list/tuple: index()	Traffic Light	
10.18sequenceslist: sort()Eternal Flame10.19sequenceslist: append()Music Box10.20sequencesusing dict() constructor(future)10.21sequencestuple: literals and usageLine Following10.22sequencesdictionary: literals and usageLine Following10.23sequenceslist comprehensionsLine Following10.24sequencesNested lists/tuples: matricesLine Sensors10.25sequenceslist: literals and usageRobot Metronome11.2stringsstring (type and coercion/ctor)Cyber Storm11.2stringsslicing stringsCyber Storm11.3stringsstring escape sequencesCyber Storm11.4stringsstring operator: +Scoreboard11.5stringstring operator: *Rock Climber11.7stringsstring operator: *Rock Climber11.8stringstype conversion: str()Time MachineCombination Lock11.9stringsstring formatting with string.format()Rock Climber12.1toolsdocstringsBoundary Patrol	10.16	sequences	list/tuple: sorted(), reversed()	Eternal Flame	
10.19sequenceslist: append()Music Box10.20sequencesusing dict() constructor(future)10.21sequencestuple: literals and usageLine Following10.22sequencesdictionary: literals and usageLine Following10.23sequenceslist comprehensionsLine Following10.24sequencesNested lists/tuples: matricesLine Sensors10.25sequencesNested lists/tuples: matricesLine Sensors10.25sequenceslist: literals and usageRobot Metronome11.1stringsstring (type and coercion/ctor)Cyber Storm11.2stringsslicing stringsCyber Storm11.3stringsstring escape sequencesCyber Storm11.4stringsmultiline stringsMusic Box11.5stringstring operator: +Scoreboard11.6stringsstring operator: +Scoreboard11.7stringsstring operator: str()Time Machine11.9stringsstring formatting with string.format()Rock Climber12.1toolsdocstringsBoundary Patrol	10.17	sequences	dictionary: keys(), items(), values()	(future)	
10.20sequencesusing dict() constructor(future)10.21sequencestuple: literals and usageLine Following10.22sequencesdictionary: literals and usageLine Following10.23sequenceslist comprehensionsLine Following10.24sequencesNested lists/tuples: matricesLine Sensors10.25sequenceslist: literals and usageRobot Metronome10.25sequenceslist: literals and usageCyber Storm11.1stringsstring (type and coercion/ctor)Cyber Storm11.2stringsslicing stringsCyber Storm11.3stringsstring escape sequencesCyber Storm11.4stringsmultiline stringsMusic Box11.5stringsstring formatting with f-stringsGo the Distance11.6stringsstring operator: +ScoreboardCyber Storm11.7stringsstring operator: *Rock Climber11.8stringsstring operator: *Rock Climber11.9stringsstring formatting with string.format()Rock Climber12.1toolsdocstringsBoundary Patrol	10.18	sequences	list: sort()	Eternal Flame	
10.21sequencestuple: literals and usageLine Following10.22sequencesdictionary: literals and usageLine Following10.23sequenceslist comprehensionsLine Following10.24sequencesNested lists/tuples: matricesLine Sensors10.25sequenceslist: literals and usageRobot Metronome11.1stringsstring (type and coercion/ctor)Cyber Storm11.2stringsslicing stringsCyber Storm11.3stringsstring escape sequencesCyber Storm11.4stringsmultiline stringsMusic Box11.5stringsstring formatting with f-stringsGo the Distance11.6stringsstring operator: +ScoreboardCyber Storm11.7stringsstring operator: *Rock Climber11.8stringsstring operator: *Rock Climber11.9stringsstring formatting with string.format()Rock Climber12.1toolsdocstringsBoundary Patrol	10.19	sequences	list: append()	Music Box	
10.22 sequences dictionary: literals and usage Line Following 10.23 sequences list comprehensions Line Following 10.24 sequences Nested lists/tuples: matrices Line Sensors 10.25 sequences list: literals and usage Robot Metronome 11.1 strings string (type and coercion/ctor) Cyber Storm 11.2 strings slicing strings Cyber Storm 11.3 strings string escape sequences Cyber Storm 11.4 strings multiline strings Music Box 11.4 strings string formatting with f-strings Go the Distance 11.5 strings string operator: + Scoreboard Cyber Storm 11.7 strings string operator: * Rock Climber Inter Machine Combination Lock 11.9 strings string formatting with string.format() Rock Climber Inter Machine Inter Machine 12.1 tools docstrings Boundary Patrol Inter Machine Inter Machine	10.20	sequences	using dict() constructor	(future)	
10.23 sequences list comprehensions Line Following 10.24 sequences Nested lists/tuples: matrices Line Sensors 10.25 sequences list: literals and usage Robot Metronome 11.1 strings string (type and coercion/ctor) Cyber Storm 11.2 strings slicing strings Cyber Storm 11.3 string escape sequences Cyber Storm 11.4 strings multiline strings Music Box 11.4 strings string formatting with f-strings Go the Distance 11.5 string operator: + Scoreboard Cyber Storm 11.7 strings string operator: * Rock Climber 11.8 strings string operator: * Rock Climber 11.8 strings string formatting with string.format() Rock Climber 11.9 strings string formatting with string.format() Rock Climber 12.1 tools docstrings Boundary Patrol	10.21	sequences	tuple: literals and usage	Line Following	
10.24 sequences Nested lists/tuples: matrices Line Sensors 10.25 sequences list: literals and usage Robot Metronome 11.1 strings string (type and coercion/ctor) Cyber Storm 11.2 strings slicing strings Cyber Storm 11.3 strings string escape sequences Cyber Storm 11.4 strings multiline strings Music Box 11.4 strings string formatting with f-strings Go the Distance 11.6 strings string operator: + Scoreboard Cyber Storm 11.7 strings string operator: * Rock Climber Intervention 11.8 strings type conversion: str() Time Machine Combination Lock 11.9 strings string formatting with string.format() Rock Climber Intervention 12.1 tools docstrings Boundary Patrol Intervention	10.22	sequences	dictionary: literals and usage	Line Following	
10.25sequenceslist: literals and usageRobot Metronome11.1stringsstring (type and coercion/ctor)Cyber Storm11.2stringsslicing stringsCyber Storm11.3stringsstring escape sequencesCyber Storm11.4stringsmultiline stringsMusic Box11.5stringsstring formatting with f-stringsGo the Distance11.6stringsstring operator: +ScoreboardCyber Storm11.7stringsstring operator: *Rock Climber11.8stringstype conversion: str()Time MachineCombination Lock11.9stringsstring formatting with string.format()Rock Climber12.1toolsdocstringsBoundary Patrol	10.23	sequences	list comprehensions	Line Following	
11.1stringsstring (type and coercion/ctor)Cyber Storm11.2stringsslicing stringsCyber Storm11.3stringsstring escape sequencesCyber Storm11.4stringsmultiline stringsMusic Box11.5stringsstring formatting with f-stringsGo the Distance11.6stringsstring operator: +ScoreboardCyber Storm11.7stringsstring operator: *Rock Climber11.8stringstype conversion: str()Time MachineCombination Lock11.9stringsstring formatting with string.format()Rock Climber12.1toolsdocstringsBoundary Patrol	10.24	sequences	Nested lists/tuples: matrices	Line Sensors	
11.2stringsslicing stringsCyber Storm11.3stringsstring escape sequencesCyber Storm11.4stringsmultiline stringsMusic Box11.5stringsstring formatting with f-stringsGo the Distance11.6stringsstring operator: +ScoreboardCyber Storm11.7stringsstring operator: *Rock Climber11.8stringstype conversion: str()Time MachineCombination Lock11.9stringsstring formatting with string.format()Rock Climber12.1toolsdocstringsBoundary Patrol	10.25	sequences	list: literals and usage	Robot Metronome	
11.3 strings string escape sequences Cyber Storm 11.4 strings multiline strings Music Box 11.5 strings string formatting with f-strings Go the Distance 11.6 strings string operator: + Scoreboard Cyber Storm 11.7 strings string operator: * Rock Climber 11.8 strings type conversion: str() Time Machine Combination Lock 11.9 strings string formatting with string.format() Rock Climber Index 12.1 tools docstrings Boundary Patrol Index	11.1	strings	string (type and coercion/ctor)	Cyber Storm	
11.4stringsmultiline stringsMusic Box11.5stringsstring formatting with f-stringsGo the Distance11.6stringsstring operator: +ScoreboardCyber Storm11.7stringsstring operator: *Rock Climber11.8stringstype conversion: str()Time MachineCombination Lock11.9stringsstring formatting with string.format()Rock Climber12.1toolsdocstringsBoundary Patrol	11.2	strings	slicing strings	Cyber Storm	
11.5stringsstring formatting with f-stringsGo the Distance11.6stringsstring operator: +ScoreboardCyber Storm11.7stringsstring operator: *Rock Climber11.8stringstype conversion: str()Time MachineCombination Lock11.9stringsstring formatting with string.format()Rock Climber12.1toolsdocstringsBoundary Patrol	11.3	strings	string escape sequences	Cyber Storm	
11.6stringsstring operator: +ScoreboardCyber Storm11.7stringsstring operator: *Rock Climber11.8stringstype conversion: str()Time MachineCombination Lock11.9stringsstring formatting with string.format()Rock Climber12.1toolsdocstringsBoundary Patrol	11.4	strings	multiline strings	Music Box	
11.7 strings string operator: * Rock Climber 11.8 strings type conversion: str() Time Machine Combination Lock 11.9 strings string formatting with string.format() Rock Climber Image: Combination Lock 12.1 tools docstrings Boundary Patrol Image: Combination Lock	11.5	strings	string formatting with f-strings	Go the Distance	
11.8 strings type conversion: str() Time Machine Combination Lock 11.9 strings string formatting with string.format() Rock Climber 12.1 tools docstrings Boundary Patrol	11.6	strings	string operator: +	Scoreboard	Cyber Storm
11.9 strings string formatting with string.format() Rock Climber 12.1 tools docstrings Boundary Patrol	11.7	strings	string operator: *	Rock Climber	
12.1 tools docstrings Boundary Patrol	11.8	strings	type conversion: str()	Time Machine	Combination Lock
	11.9	strings	string formatting with string.format()	Rock Climber	
12.2 tools Ulsing pydoc Teacher Manual	12.1	tools	docstrings	Boundary Patrol	
	12.2	tools	Using pydoc	Teacher Manual	

** Any mission referred to in the above table that you do not currently see on sim.firialabs.com is coming soon. **

Level 1 Python with Virtual Robots Unit Overview

Unit 0: Coding Unplugged (5-10 days*)

If your students come with no Computer Science background, it is important to start by building a foundation of computational thinking. Dedicate some time for students to learn basic terms, such as algorithm, program, and debug. See the Firia Labs collection of Unplugged Activities <u>here</u>.

Unit 1: Introductory Missions (7 days*)

Students will learn the basics of coding in Python and the CodeBots LEDs, and motors.

Mission 1: Welcome

Mission 2: Introducing CodeBot

Mission 3: Light the Way

Mission 4: Get Moving

Unit 2: Inputs and Outputs (10 days*)

Students will learn how to use the CodeBot LEDs, Buttons, speakers and motors.

Mission 5: Dance Bot

Mission 6: Robot Metronome

Unit 3: Get Moving (15 days*)

Students will learn how to optimize the CodeBot sensors and motors.

Mission 7: Line Sensors

Mission 8: Boundary Patrol

Mission 9: Line Following

Unit 4: Synthesize (15 days*)

Students will learn how to use sensor data and botservices to synthesize all you've learned!

Mission 10: Fido Fetch

Mission 11: Airfield Ops

Mission 12: King of the Hill

Mission 13: Going the Distance

Mission 14: Music Box

Mission 15: Cyber Storm

Note In the pacing guidelines, the suggested days are based on a 90 minute block. Adjust accordingly to your school day. Because of the time it takes to set up and tear down, it may take **more than** twice as many days in a 45-50 minute period. This is pacing for just the missions without remixes. Remixes would add time to this curriculum. We suggest giving at least two hours to create a well planned remix.

www.firialabs.com

	Level 1 Python with	Virtual Robots Pacing Guide
Week 1		First Days -up, Unplugged Activities sess their prior knowledge, and build a foundation of computer science basics.
Week 2	Mission 1 & 2 Welcome & Introducing CodeBot A visual and hands-on tour of the components of your 'bot.	Mission 3 & 4 Light the Way & Get Moving These missions take you step-by-step through coding projects involving sequences of motor control and LED lights. Learn how to turn on sound.
Week 3	This mission teaches you abou	Mission 5 Dance Bot It loops, debugging, variables, functions, and algorithms.
Week 4	This mission turns your CodeBot into a tim	Mission 6 Robot Metronome e-keeping device that a musician can set to the tempo of their choice.
Week 5	This mission uses t	Mission 7 Line Sensors he line sensors to navigate your CodeBot.
Week 6	Mission 8 Boundary Patrol The mission teaches you how to program your CodeBot to roam a fenced area, using line sensors to stay in bounds.	Mission 9 Line Following The mission has your CodeBot mastering the biggest and baddest line-course around.
Week 7	The mission trains your Co	Mission 10 Fido Fetch odeBot to fetch using a dictionary of commands.
Week 8	Mission 11 Airfield Ops The mission teaches you some unique programming concepts to help with airfield runway operations.	Mission 12 King of the Hill The mission teaches all about the CodeBot's accelerometer.
Week 9	Mission 13 Going the Distance The mission teaches about the CodeBot's wheel encoders and all the gritty details of those glorious rotating discs.	Mission 14 Music Box The mission turns your CodeBot into a jukebox and teaches about Python's file operations.

	MISSION 1 & 2: Welcome & Introducing CodeBot	# HOURS: 1-2
MISSION GOALS: Students will learn about the CodeBot hardware and the simulation environment.	DAILY MATERIALS: • Google Chrome	VOCABULARY: • Peripherals • CPU
FOCUS STANDARDS:		
 LEARNING TARGETS: I can navigate CodeSpace. I can identify the main comp I can create a new program and the second secon	ponents of the CodeBot. and write code using conventions of capitaliza	ation and punctuation specific to Python.
Toolbar, and Navigation Con	e CodeSpace interface: Text Editor, Objective trols. odeBot: USB connector, LEDs, Reboot button	
	Djective panel carefully. There is a lot of impo ect coding tools in your Toolbox as you go.	rtant reading!
devices they use have similar circuit b they use every day! Challenge students to name a few de	he to personally inspect different views of the boards inside. The tools and techniques they'	omputer chips or "microcontrollers" such as the
Microwave ovenCell phone	Video game controllerRefrigerator	Bread machineAlarm system
 Automobile Watch or fitness tracker 	Home thermostatCoffee maker	 Fuel pumps Automatic garage doors Electronic locks
AutomobileWatch or fitness tracker	Coffee maker pur lives are impacted by the above technolog	Fuel pumpsAutomatic garage doors
 Automobile Watch or fitness tracker Challenge students to describe how of the students	• Coffee maker our lives are impacted by the above technolog ented.	Fuel pumpsAutomatic garage doorsElectronic locks
 Automobile Watch or fitness tracker Challenge students to describe how of before computer technology was inverted before computer technology was inverted. ASSESSMENT STRATEGIES: 1.4 Checkpoint - could use as an exit 2.5 Submit - Students label the difference TEACHER NOTES: Always refer to Appendix A if you get	• Coffee maker our lives are impacted by the above technolog ented.	Fuel pumpsAutomatic garage doorsElectronic locks
Automobile Watch or fitness tracker Challenge students to describe how of before computer technology was inverted. ASSESSMENT STRATEGIES: 1.4 Checkpoint - could use as an exit 2.5 Submit - Students label the difference. TEACHER NOTES:	• Coffee maker our lives are impacted by the above technolog ented. slip ent parts of the CodeBot.	Fuel pumpsAutomatic garage doorsElectronic locks

UNIT 1: Introductory Missions	MISSION 3: Light the Way	# HOURS: 2-3	
MISSION GOALS: Students will learn the basics of Python.	ADDITIONAL MATERIALS: • Flowchart or pseudocode paper or google doc	VOCABULARY: • CodeTrek • Byte • Debug • Binary	
FOCUS STANDARDS: 3.17, 8.20, 9.4			
 I can use the "Step" feature I can use binary values to an I can use comments to explain 	nimate the LEDs.	ration and punctuation specific to Python.	
Use descriptive comments.	gram, load it to the CodeBot, and run it. fectively plans out what they want their code	e to accomplish.	
Computers execute code in sBuilt-in functions come from	ise code from external modules or libraries. sequential steps, initially starting at the top on I libraries like botcore or time . Ex: sleep udocode before typing the code.		
DISCUSS REAL WORLD APPLICATION You've used some fundamental comp Controlling LEDs and Motors Reading button inputs			

pseudocode first)

TEACHER NOTES: Always refer to Appendix A if you get stuck. It has the "Answer Keys" for you

3.1 Discuss import statements. When is it better to import just the library you want, versus using the wildcard * to import all?3.2 Discuss Binary and how computers read code in binary.

3.4 To complete the challenge to turn on ALL the LEDs, type "leds." then tab or dir(leds) to see all.

3.5 Students will create a flowchart/pseudocode describing what leds will turn on and off and in what order. This should be in their coding notebooks. It will allow them to think out their code before trying to type it like a rough draft.

3.5 Have the students use the Explore Mode (especially early finishers) This is where they can complete remix programs that they create for lessons.

Level 1 Pytho	on with Virtual Robots Flowchart	/ Pseudocode
Beginning Code: Imports Write your import commands here:		
LEDs you plan to turn on	List of LEDs to turn on:	Code to turn them on:
LEDs you plan to make blink and how many times	List of LEDs that will blink:	Code you will use to make them blink:

ISSION 4: Get Moving DITIONAL MATERIALS: • Code Trace Chart • Pseudocode Chart Flowchart (or pseudocode). bling the Motors and telling them how mu opropriately ker	 # HOURS: 2-3 VOCABULARY: API motors Frequency Pitches ch power to apply to each motor.
Code Trace Chart Pseudocode Chart dowchart (or pseudocode). bling the Motors and telling them how muspropriately	 API motors Frequency Pitches
bling the Motors and telling them how muppropriately	ich power to apply to each motor.
bling the Motors and telling them how muppropriately	ich power to apply to each motor.
eBot will touch all 4 tennis balls te at different speeds. peakers.	
nabling the motors and giving different sp s out of the speaker. raries like botcore or time . Ex: sleep	
r science and robotics principles: th specific timing and sequencing mba vacuums, and more!	
	e at different speeds. neakers. nabling the motors and giving different sp out of the speaker. aries like botcore or time . Ex: sleep

- 4.3 Checkpoint.
- 4.3 Remix- have students Try for all 4 balls in 30 seconds.
- 4.4 Have students use different pitches to try to recreate a simple nursery rhyme.

TEACHER NOTES:

Always refer to Appendix A if you get stuck. It has the "Answer Keys" for you

4.3 Require students to make a flowchart and go over the engineering design process.

4.3 Do a trace chart together. Talking through what works and what does not and the importance of documenting your tries (so you do not waste time trying same code twice)

Level 1 Pythor	n with Virtual Robots Mission 4.3 Pseudocode
Beginning Code: Imports Write your import commands here:	
What order do you plan to touch the tennis balls?	
What directions will you go in order to reach the first tennis ball?	What code will you use on the motors to make the CodeBot move those directions?
What directions will you go in order to reach the second tennis ball?	What code will you use on the motors to make the CodeBot move those directions?
What directions will you go in order to reach the third tennis ball?	What code will you use on the motors to make the CodeBot move those directions?
What directions will you go in order to reach the fourth tennis ball?	What code will you use on the motors to make the CodeBot move those directions?
What other code do you think you might need in order to meet the 30 second requirement and Why?	

Code Trace Chart (To Document how you fixed Errors) Write this for every attempt you try so you have documentation of what each attempt did.			
Code	Wanted Outcome	Correct?	Fix

UNIT 2 : Inputs and Outputs	MISSION 5: Dance Bot	# HOURS: 5
MISSION GOALS: Students will gain an in-depth understanding of CodeBot's line sensors.	ADDITIONAL MATERIALS: • Code Trace Chart • Pseudocode Chart	VOCABULARY: • variable • While & for loops • Increment
FOCUS STANDARDS: 1.3, 1.4, 3.15,	3.16, 6.5, 6.6, 7.7, 7.8	
 I can use a while True loop. I can increment and decrem I can assign data to a variab I can use the "Step" feature I can write a function. 	le.	
Incrementally test code.	<pre>x LED 8 times. ly to count number of blinks int () functions are used to test differer</pre>	nt environments.
 indented at the same level. Increments (and decrement The CodeSpace debugger le Variables can be defined to CodeSpace's Debug Console A function is a named chund 	hile statement introduces a new block of c s) are used to make code cleaner and more ts you <i>step</i> through the code one line at a hold changing values. can be used to experiment with Python's c of code you can run anytime just by callir Ds (Outputs), and Speaker sounds (Output	time to understand what the computer is doing. <pre>print() statement.</pre>
Reading button inputs	outer science and robotics principles:	sequencers, electric toothbrushes, and more!
notebook whether digital or paper k 5.1 Have students remix where they 5.2 Checkpoint	ased. The Code Trace sheets should be w make different lights blink different numbe	ers of times and for different lengths of time.
world.		problems they ran into, how this relates to the rea you do not indent or is it just to make it look more

5.6 Checkpoint as an exit slip

5.8 Have students turn in their code BEFORE you move them to pairs or the whole group.

TEACHER NOTES:

Remind students to put comments in their code for later reference.

Always refer to Appendix A if you get stuck. It has the "Answer Keys" for you

- 5.1 Discuss Variables in math class and then explain how they work in programming.
- 5.2 discuss the print command and what exactly it is doing (you do not see it on the CodeBot anywhere).
- 5.2 discuss the importance of debugging programs.
- 5.5 Have students fill out the Code Trace Chart and discuss it with them.
- 5.6 discuss algorithms and functions. (use the information in the toolbox that is given and discuss in detail)
- 5.8 have class discussion on code they used and why. Have them start individually for a day, then in pairs, and then as a class

UNIT 2 : Inputs and Outputs	MISSION 6: Robot Metronome	# HOURS: 5
MISSION GOALS: Students will use sensor inputs to program the 'bot to play different tempos.	ADDITIONAL MATERIALS: • Code Trace Chart • Pseudocode Chart	VOCABULARY: • Tempo • BPM • Infinite loop • Boolean
FOCUS STANDARDS: 1.2, 3.13, 3.14,	8.16, 8.17, 8.18, 8.19, 10.25	
• I can use a while True lo	ng a flowchart (or pseudocode). pop. pressed to control a variable.	
SUCCESS CRITERIA: Loops used correctly to blin Button is pressed to toggle The LEDs light up correctly		
	bot.	outs) are part of the User Interface . They allow the
DISCUSS REAL WORLD APPLICATION Musicians can keep a tempo going li		
6.7 Discuss what toggle means on ex	uttons.was_pressed and buttons.is_pres kit slip nusic names for the different tempos.	sed
Require students to make a flowchar Submit. Students should submit the	t stuck. It has the "Answer Keys" for you rt for all code and go over the engineerin ir code and documentation of the engine ing the BMP. Maybe have them calculat	ng design process.

UNIT 3: Get Moving	MISSION 7: Line Sensors	# HOURS: 5
MISSION GOALS: Students will use sensor inputs to program the 'bot to navigate around lines.	 ADDITIONAL MATERIALS: Code Trace Chart Pseudocode Chart Paper to chart the table of results for each cardinal and intermediate direction. 	VOCABULARY: Phototransistor Emitter Detector Reflector Reflectivity print() statement
FOCUS STANDARDS: 1.1, 6.4, 7.6, 10	.24	
	g a flowchart (or pseudocode). ugger to get real-time sensor values. -time line sensor values.	
SUCCESS CRITERIA: Advanced debugger and pr	int () functions are used to test different e	nvironments.
-	ding of CodeBot's Line Sensor ntact sensors used in many industrial and comr IS:	mercial applications.
program in each cardinal and interm 7.3 Discuss Compound inequalities a 7.3 Checkpoint as exit slip 7.4 Discuss Absolute value and how	SLOWLY clockwise cardinal directions and the CodeBot's reading ediate direction in order to find the correct rea and how they are being used in this code it is being applied here as well as constants and what each line does (must include detailed cor	adings in the console. d global variables.
Require students to make a flowchar	t stuck. It has the "Answer Keys" for you t for all code and go over the engineering desi ir code and documentation of the engineering	

	el 1 Python with Virtual Rob	
UNIT 3: Get Moving	MISSION 8: Boundary Patrol	# HOURS: 2-3
MISSION GOALS: Students will use sensor inputs to program the 'bot to roam a fenced (lined) area.	ADDITIONAL MATERIALS: • Code Trace Chart • Pseudocode Chart	 VOCABULARY: Docstring (in Code Trek of 8.6) Constants Parameter vs argument

LEARNING TARGETS:

- I can plan out a project using a **flowchart** (or pseudocode).
- I can display the boolean results on the LED above each line sensor.
- I can make a contact counter to show each line-detect on the user LEDs.
- I can teach the bot to stay inside the lines.
- I can use the proximity sensor detect () API to make a presence detector.
- I can experiment with light and dark surfaces to find the ideal emitter power and detection threshold levels for each environment.
- I can apply previous knowledge of the motors to rotate to face an object moving in front of it.
- I can create an algorithm to track an object and chase after it.

SUCCESS CRITERIA:

- **U** Value threshold and comparison operator are customized for the specific testing environment.
- Create a function that turns on leds.ls num above each line sensor.
- Use a variable increment to count up on leds.user each time a line is detected.
- Reuse code from *Line Sensors* to drive bot.
- U Write code that detects an object using the proximity sensors and light the LED near the corresponding sensor.

KEY CONCEPTS:

- Use threshold comparison operations to make decisions with sensor data.
- CodeSpace's **Debug Console** can be used to experiment with Python's print() statement.
- Engineers build in safety features so the device doesn't run on startup, but will wait for the user.
- Autonomous robots use sensor data to make decisions and take action in its unique environment.
- A detection threshold from 0%-100% controls how much light is needed for a True detection. *If you decrease the* threshold *value, the 'bot works well even on a white surface.*

DISCUSS REAL WORLD APPLICATIONS:

- Automatic Guided Vehicles (AGVs) use this kind of code to zoom around warehouse distribution centers, getting packages to you!
- Robots are used to clean up environmental waste, explore underground mines, discover shipwrecks, and do other tasks deemed unsafe for humans.
- The kind of code you've written is inside stuff you might use every day, without even thinking about it! Touchless faucets, soap dispensers, and hand dryers, automatic doors, vehicle navigation and safety systems, and factory automation systems.

ASSESSMENT STRATEGIES:

- 8.2 Checkpoint
- 8.4 Submit pseudocode
- 8.4 Checkpoint

8.5 Have the students walk through each step of code and explain what is happening to check for understanding.

TEACHER NOTES:

Always refer to Appendix A if you get stuck. It has the "Answer Keys" for you Require students to make a flowchart for all code and go over the engineering design process.

www.firialabs.com

Submit. Students should submit their code and documentation of the engineering design process. 8.1 Remember to discuss where the code prints to (console)

	Level 1 Python with Virtual Robots Lesson Plans		
UNIT 3: Get Moving	MISSION 9: Line Following	# HOURS: 2-3	
MISSION GOALS: Students will use sensor inputs to program the 'bot to follow a line course.	 ADDITIONAL MATERIALS: Code Trace Chart Pseudocode Chart Table for charting sensor data 	VOCABULARY: • REPL • Tuple • Algorithm • Python Dictionary • Global variables	
FOCUS STANDARDS: 3.12, 8.14, 8.15,	, 10.21, 10.22, 10.23		
		my CodeBot follow a path.	
SUCCESS CRITERIA: My CodeBot followed a curv Got successfully navigates o Does not veer off co Stays within bounds Finish the course w	ourse ary lines	ame.	
 KEY CONCEPTS: Write code that uses the line APIs PIDs Understand and use the data Create a dictionary for the C 	a from line sensors to navigate the path.		
DISCUSS REAL WORLD APPLICATION: Self driving car	S:		
ASSESSMENT STRATEGIES: 9.2 Checkpoint as exit slip 9.4 Psuedocode and or Flowchart sub 9.4 Checkpoint as exit slip 9.5 Have the students create a table (9.6 Checkpoint as exit slip 9.8 Students can describe global varia 9.8 checkpoint as exit slip	google sheets, excel, on paper) of the data	they collect in the console and turn it in.	
TEACHER NOTES: Always refer to Appendix A if you get Require students to make a flowchart	stuck. It has the "Answer Keys" for you t for all code and go over the engineering d r code and documentation of the engineeri		

www.firialabs.com

the next objective it will explain it. 9.7 can make you dizzy to watch so make sure epileptics are careful with this one.

Level 1 Python with Virtual Robots Lesson Plans		
UNIT 4: Synthesize	MISSION 10: Fido Fetch	# HOURS: 5
MISSION GOALS: Students will train the CodeBot to fetch using python dictionaries and console inputs.	ADDITIONAL MATERIALS: • Code Trace Chart • Pseudocode Chart	 VOCABULARY: Python dictionary Refactoring KeyError
FOCUS STANDARDS: 8.4, 8.5, 8.6, 8.1	2, 8.13	
Create a Python dictionary o	ferent commands in the dictionary.	
SUCCESS CRITERIA: The robot moves when say 'o Code still works after refactor Fido eats all the treats	come' and stops when say 'stay' ring	
 KEY CONCEPTS: Add a function to your create Refactoring makes code easi 		
DISCUSS REAL WORLD APPLICATION	5:	
ASSESSMENT STRATEGIES: 10.3 Have the students explain all the 10.3 checkpoint as an exit slip 10.6 submit your pseudocode or flow 10.7 checkpoint as an exit slip		alue)
TEACHER NOTES: Always refer to Appendix A if you get Require students to make a flowchart Submit. Students should submit their 10.2 remember that the students mu 10.9 discuss the value of using the arr	for all code and go over the engineer code and documentation of the eng st be zoomed in in order to hear Fide	ering design process. gineering design process. o "speak"

Level 1 Python with Virtual Robots Lesson Plans

UNIT 4: Synthesize	MISSION 11: Airfield Ops	# HOURS: 2-3
MISSION GOALS: Students will learn some unique programming concepts that help with airfield runway operations.	ADDITIONAL MATERIALS: • Code Trace Chart • Pseudocode Chart	VOCABULARY: Integer division modulo
FOCUS STANDARDS: 9.2, 11.7, 11.9		
Using line sensors to followTurning on the speaker and		
SUCCESS CRITERIA: My CodeBot followed the d My CodeBot stops at the er My LEDs light up at correct	d of the line	
KEY CONCEPTS: • Use python operators for discuss REAL WORLD APPLICATION	vision, multiplying, and remainders	
ASSESSMENT STRATEGIES: 11.1 submit your final code and your 11.2 submit your count so definitely 11.6 checkpoint as exit slip		
Require students to make a flowchar Submit. Students should submit the 11.1 most students will not get first 11.4 discuss the binary representation		ing design process. neering design process.

Level 1 Python with Virtual Robots Lesson Plans		
UNIT 4: Synthesize	MISSION 12: King of the Hill	# HOURS: 2-3
MISSION GOALS: Students will use the CodeBot's accelerometer to "Master the Hill."	ADDITIONAL MATERIALS: • Code Trace Chart • Pseudocode Chart	VOCABULARY: • Accelerometer • Format specifiers • ASCII • Hexadecimal
FOCUS STANDARDS: 3.10, 8.9, 8.10	, 8.11, 11.5	
I can print accelerometer ofLearn how to see the pitch	ng a flowchart (or pseudocode). lata to the console in 3 different ways (and roll of the CodeBot nsole show a bar graph of the informat	
Convert radians to degreesCodeBot displays the pitch	data in three different ways (comma se and roll to the console, shows bar grap e course Autonomously and avoids cras	oh of values, and the degree measure
• Import the math module	in comma separated lists, lists, and tup rd to represent pushing buttons on the ontrolled	
DISCUSS REAL WORLD APPLICATIO Remote controlled cars, drones, etc		
ASSESSMENT STRATEGIES: 12.1 Checkpoint as exit slip 12.4 submit pseudocode as well as 12.6 submit pseudocode as well as		
Require students to make a flowcha Submit. Students should submit th 12.1 make sure on the sep= that the data		ring design process.

geometry. Make it a cross curricular unit. The instructions in CodeTrek explain these concepts.

Level 1 Python with Virtual Robots Lesson Plans		
UNIT 4: Synthesize	MISSION 13: Going the Distance	# HOURS: 2-3
MISSION GOALS: Students will learn all about the Codebot's wheel encoders.	ADDITIONAL MATERIALS: • Code Trace Chart • Pseudocode Chart	VOCABULARY: • Wheel encoder • API function • Circumference • Closed loop control system vs open loop
FOCUS STANDARDS: 3.9		
 LEARNING TARGETS: I can plan out a project using a flowchart (or pseudocode). I can use the wheel encounter to calculate the distance and angle of rotation I can have my CodeBot Count Pulses I can use math to make my CodeBot move in a Arc pattern 		
SUCCESS CRITERIA: Console shows bar graph representing wheel rotation		

- CodeBot moves only one full rotation
- CodeBot stops at checkpoint
- CodeBot autonomously goes around free throw ring and hits all 4 checkpoints

KEY CONCEPTS:

- Wheel encounter
- Ascii
- Bar chart
- / vs //
- Counting Pulses

DISCUSS REAL WORLD APPLICATIONS:

It's quite likely you interact with products every day which use sensors like this. From home appliances to automobiles, electromechanical systems of all kinds use sensors like this to measure rotational motion.

ASSESSMENT STRATEGIES:

- 13.3 submit code used in REPL
- 13.3 Checkpoint as exit slip
- 13.6 Checkpoint as exit slip with explanation for why those are the correct answers
- 13.8 Have students calculate 3 wheel rotations using the math on the screen
- 13.10 Have the students show how they calculated the speed for the formula in the code
- 13.10 checkpoint as an exit slip
- 13.11 What did they adjust the KP to and did they adjust anything else? If so, what and why?
- 13.12 Have students create a remix. Maybe rotate 180 degrees and go clockwise instead of counterclockwise

TEACHER NOTES:

Always refer to Appendix A if you get stuck. It has the "Answer Keys" for you

Require students to make a flowchart for all code and go over the engineering design process.

Submit. Students should submit their code and documentation of the engineering design process.

13.8 bring the math teacher in to discuss Circumference

13.8 Checkpoint moves, so have them zoom out and count the lines in order to figure out how many CM it needs to move based on number of lines between CodeBot and Checkpoint

13.12 definitely a great lesson to bring in a math guest speaker to speak about these formulas' application in the real world.

www.firialabs.com

Level 1 Python with Virtual Robots Lesson Plans		
UNIT 4: Synthesize	MISSION 14: Music Box	# HOURS: 2-3
MISSION GOALS: Students will turn the CodeBot into a jukebox and learn about Python's file operations.	ADDITIONAL MATERIALS: • Code Trace Chart • Pseudocode Chart	VOCABULARY: • Split function • Frequencies • Flushing a file • int() function • f.readlines()
FOCUS STANDARDS: 8.8, 10.11		
 I can play songs through it I can store and retrieve no I can code button pushes 		ate notes and beats into frequencies e system
-	hkle, Little Star tion from other files in the file syster .ittle Lamb with correct note lengths	n you created.
 KEY CONCEPTS: Create a list of the notes to Use split function Write code that can read of Flush a file when you want Add length of beat to each Convert data to an integer Build a multidimensional list 	to save it but keep it open note	оор
DISCUSS REAL WORLD APPLICATION Jukebox	IS:	
		s forward in the list and 0 goes backwards. Also try naybe driving around while it plays.
Require students to make a flowcha Submit. Students should submit the *** Have students "save as" at the b 14.1 Bring in the music teacher to di	scuss and show the students the diffe	ering design process.

CodeBot

www.firialabs.com

14.5 This is a HUGE concept in the real world. Programmers write code all the time that pulls other files they have created. 14.5 make sure the students include the file extension in the name for the open command.

Level 1 Python with Virtual Robots Lesson Plans		
UNIT 4: Synthesize	MISSION 15: Cyber Storm	# HOURS: 2-3
MISSION GOALS: Students will help to protect an email server by using file operations.	ADDITIONAL MATERIALS: • Code Trace Chart • Pseudocode Chart	VOCABULARY: ●
FOCUS STANDARDS:		
LEARNING TARGETS: ● I can plan		
SUCCESS CRITERIA:		
KEY CONCEPTS: ●		
DISCUSS REAL WORLD APPLICATIONS:		
ASSESSMENT STRATEGIES:		
TEACHER NOTES: Always refer to Appendix A if you get stuck. It has the "Answer Keys" for you Require students to make a flowchart for all code and go over the engineering design process. Submit. Students should submit their code and documentation of the engineering design process. *** Have students "save as" at the beginning of each new objective so that they can refer back to other methods taught ***		

